Primes in tuples I

نویسندگان

  • Daniel A. Goldston
  • János Pintz
  • Cem Y. Yıldırım
  • Y. YILDIRIM
چکیده

We introduce a method for showing that there exist prime numbers which are very close together. The method depends on the level of distribution of primes in arithmetic progressions. Assuming the Elliott-Halberstam conjecture, we prove that there are infinitely often primes differing by 16 or less. Even a much weaker conjecture implies that there are infinitely often primes a bounded distance apart. Unconditionally, we prove that there exist consecutive primes which are closer than any arbitrarily small multiple of the average spacing, that is, lim inf n!1 pnC1 pn logpn D 0: We will quantify this result further in a later paper.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic behaviour of associated primes of monomial ideals with combinatorial applications

Let  $R$ be a commutative Noetherian ring and $I$ be an ideal of $R$. We say that $I$ satisfies the persistence property if  $mathrm{Ass}_R(R/I^k)subseteq mathrm{Ass}_R(R/I^{k+1})$ for all positive integers $kgeq 1$, which $mathrm{Ass}_R(R/I)$ denotes the set of associated prime ideals of $I$. In this paper, we introduce a class of square-free monomial ideals in the polynomial ring  $R=K[x_1,ld...

متن کامل

The Path to Recent Progress on Small Gaps between Primes

In the articles Primes in Tuples I & II ([13], [14]) we have presented the proofs of some assertions about the existence of small gaps between prime numbers which go beyond the hitherto established results. Our method depends on tuple approximations. However, the approximations and the way of applying the approximations has changed over time, and some comments in this paper may provide insight ...

متن کامل

A Generalization of a Conjecture of Hardy and Littlewood to Algebraic Number Fields

We generalize conjectures of Hardy and Littlewood concerning the density of twin primes and k-tuples of primes to arbitrary algebraic number fields. In one of their great Partitio Numerorum papers [7], Hardy and Littlewood advance a number of conjectures involving the density of pairs and k-tuples of primes separated by fixed gaps. For example, if d is even, we define Pd(x) = |{0 < n < x : n, n...

متن کامل

On the Associated Primes of the generalized $d$-Local Cohomology Modules

The first part of the paper is concerned to relationship between the sets of associated primes of the generalized $d$-local cohomology modules and the ordinary  generalized local cohomology  modules.  Assume that $R$ is a commutative Noetherian local ring, $M$ and $N$  are  finitely generated  $R$-modules and $d, t$ are two integers. We prove that $Ass H^t_d(M,N)=bigcup_{Iin Phi} Ass H^t_I(M,N)...

متن کامل

Higher Correlations of Divisor Sums Related to Primes Iii: Small Gaps between Primes

We use divisor sums to approximate prime tuples and moments for primes in short intervals. By connecting these results to classical moment problems we are able to prove that, for any η > 0, a positive proportion of consecutive primes are within 4 + η times the average spacing between primes. Authors’ note. This paper was written in 2004, prior to the solution, in [8], of the problem considered ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005